
Week 7 - Wednesday



 What did we talk about last time?
 Exam 1 post mortem
 Program security
 Non-malicious software flaws







 If you want some review on how exponents work, try Khan 
Academy:
 https://www.khanacademy.org/math/cc-eighth-grade-math/cc-8th-

numbers-operations/cc-8th-exponent-properties/v/exponent-
properties-involving-products

https://www.khanacademy.org/math/cc-eighth-grade-math/cc-8th-numbers-operations/cc-8th-exponent-properties/v/exponent-properties-involving-products






 Therac-25 was a radiation therapy machine built by the 
Atomic Energy of Canada Limited

 It was the successor to the Therac-6 and Therac-20 machines
 The machine had low power and high power modes
 The low power mode shot a beam directly at the patient
 The high power mode created X-rays by shooting the beam at 

a target, spread these X-rays with a flattening filter, shaped 
the beam with movable blocks, and tested the strength of the 
beam with an X-ray ion chamber



 In some situations, the high power beam was activated 
without the spreader in place

 The software and hardware systems did not catch this 
particular problem

 Over 100 times the intended dose was given
 At least 2 people died and there were at least 6 overdoses 

total
 Software bugs actually kill people!



 A certain unusual combination of keystrokes had to happen 
within 8 seconds

 There were no hardware interlocks to prevent the problem if 
the user overrode the error code

 Error codes were not well-documented and were displayed as 
a number

 Software was reused from previous models that did have 
hardware interlocks

 Arithmetic overflow caused safety checks to fail in some cases



 The software/hardware combination had never been tested 
before use

 Personnel did not believe complaints due to confidence in the 
system

 Code was not independently reviewed
 Errors were easily overridden





 Obviously, it's a problem
 It's very difficult to stop
 You never really know what's getting installed on your computer
 You're downloading thousands of files from the Internet every day
 Even if you had the source code for every program, could you catch 

all the dangerous stuff?
 Malicious code has been around since at least 1970



 Malicious code (or a rogue program) is our blanket term for 
any code that has undesirable effects that were intentionally 
designed

 The agent is the person who writes the code
 A virus is a program that can replicate itself and add malicious 

code to non-malicious programs
 A transient virus runs when its host program is running
 A resident virus lives in memory and can be active anytime



 Terminology is 
inconsistent

 Popular culture 
tends to call lots 
of things a virus

 Sometimes we 
will too, but here 
are some other 
terms

 Almost all of these 
are, by definition, 
Trojan horses

 Worms differ from 
viruses primarily 
because they 
spread across 
networks

Type Characteristics

Virus Attaches itself to a program and propagates copies of itself to other programs

Trojan horse Contains unexpected, additional functionality

Logic bomb Triggers action when condition occurs

Time bomb Triggers action when specified time occurs

Trapdoor Allows unauthorized access to functionality

Worm Propagates copies of itself through a network

Rabbit Replicates itself without limit to exhaust resources

Spyware Covertly communicates user data or user activities

Ransomware Transfers data offsite or encrypts it, demanding money for the data or decryption key



 A virus is not dangerous unless it's active
 Just having an infected file on your hard drive won't cause a 

problem unless it's accessed
 But files get opened all the time
 Programs call other programs
 Just previewing files can be dangerous
 E-mail programs can open attachments automatically

 How do these viruses infect code?



 A virus can be designed so that it starts 
running before the real program does
 Machine code for the virus is inserted before 

the machine code for the beginning of the 
program

 After the virus runs, it transfers control to the 
real program

 The real program runs as if nothing happened
 This kind of virus is easy to write
 It is also relatively easy to catch for 

antivirus software

Program Code

Virus 
Code

+

Program Code
Virus 
Code



 Another possibility is 
viruses that surround a 
program, gaining control 
before and after execution
 The code may not be at the 

beginning and end of the 
executable, but that's how 
the control flow works

 Viruses can also be spread 
throughout the code

Program Code

Virus 
Code

+

Program Code
Virus 
Code 

A

Virus 
Code 

B

Program Code

Virus 
Code

+

Infected Program Code



 The most common form of virus used to be a document virus
 A document virus is an infected document (instead of an 

executable file)
 Nevertheless, the macros that can be stored in Word, Excel, 

Access, and other similar complex documents are powerful 
enough to cause just as much damage as any other virus

 Document viruses are why Word and Excel force you to put 
documents into Edit mode to do stuff with them after you 
download them from the Internet





 If you're making a virus, the following characteristics are ideal:
 Hard to detect
 Difficult to destroy or deactivate
 Spreads infection widely
 Capable of re-infecting its host or other programs
 Easy to create
 Machine and OS independent

 It's difficult to make a virus that meets all these criteria



 Many viruses will be executed just once
 This could be on running a pirated (and infected) file
 One of the most common avenues of attack is through an e-

mail attachment



 The boot sector is the part of a hard drive that says what code 
to load to start your OS

 The details are technical, but a boot sector virus is stored in 
the chain of code that starts up your whole computer

 A virus that can start this early can circumvent or disable 
antivirus

 It has complete control over your system
 It's also not obvious from the file system



 Some programs start up and then never really die
 They are low level parts of the OS that need to keep running
 Sometimes called TSR (terminate and stay resident)

 Because these programs are always running, they are an 
attractive home for a virus

 Even if you delete the original infected file, the memory 
resident virus can replace it



 As with everything in security, the assumption is that 
attackers do not play by the rules

 A virus does not have to live where we expect it to
 A few other places that are sensible:
 Applications
 Libraries
 Compilers (infect programs as you create them)
 Antivirus software





 Ken Thompson's seminal paper Reflections on Trusting Trust:
 He added a backdoor to the Unix login program
 Too easy to trace, so he added a backdoor to the C compiler to insert 

the backdoor in any program called login
 Too easy to trace, so he added a backdoor in the compiler compiler

to insert code that would insert the backdoor in any program called 
login
 And so on, and so on …

 You can't trust anything you didn't completely create yourself
 Some amount of trust is necessary



 Viruses are difficult to detect, but we can still classify them by 
the way they change code or the way they execute

 We call these tell-tale signs a signature
 Antivirus programs work by searching for certain signatures in 

code



 At simplest, this is just a particular string of code in the binary 
 Often this code is at the beginning of a program so that it gets 

control immediately
 Craftier viruses will put themselves other places that get jumped 

to early in execution
 An antivirus program can check:
 The size of a file
 The functioning of the code compared to some standard
 It can look for suspicious execution patterns (weird JUMP instructions)
 The program against a hash digest for the program



 Viruses are also suspicious because of the way they execute
 The virus should:
 Spread infection
 Avoid detection
 Cause harm

 How do these behaviors look like normal programs?
 How do they look abnormal?
 It's not easy to tell …



 Because virus scanners try to match strings in machine code, virus 
writers design polymorphic viruses that change their 
appearances

 No-ops, code that doesn't have an impact on execution, can be 
used for simple disguises

 Clever viruses can break themselves apart and hide different parts 
in randomly chosen parts of code
 Similar to code obfuscation

 Advanced polymorphic viruses called encrypting viruses encrypt 
parts of themselves with randomly chosen keys
 A scanner would have to know to decrypt the virus to detect it

 Virus scanners can't catch everything



Virus Effect Virus Cause

Attach to executable program  Modify file directory  Write to executable program file

Attach to data or control file
 Modify directory
 Rewrite data

 Append to data
 Append data to self

Remain in memory
 Intercept interrupt by modifying 

interrupt handler address table
 Load self in non-transient memory 

area

Infect disks
 Intercept interrupt
 Intercept OS system call

 Modify system file
 Modify ordinary executables

Conceal self  Intercept system calls  Classify self as hidden file

Spread infection
 Infect boot sector
 Infect system program

 Infect ordinary program
 Infect data ordinary program reads

Prevent deactivation
 Activate before deactivating

program
 Store copy to re-infect after 

deactivation



 It's impossible to prevent infection entirely
 Some guidelines:
 Use only professional software acquired from reliable, well-established 

vendors
▪ Open source is often good, but there's a huge spectrum of quality

 Test all new software on an isolated computer
 Open attachments only when you know them to be safe
 Make a recoverable system image and store it safely
 Make and retain backup copies of executable system files
 Use virus detectors regularly and update them daily





 Web security



 Anu Regmi presents
 Read sections 4.1 – 4.4
 Work on Project 2


	COMP 4290
	Last time
	Questions?
	Project 2
	Exponent properties
	Kyle Hinkle Presents
	Case Study: Therac-25
	Therac-25 background
	Tragedies
	Direct causes
	Indirect causes
	Malicious Code
	Malicious code
	Terminology
	Viruses
	How viruses attach
	Appended viruses
	Surrounding or integrating
	Document viruses
	Where Viruses Live
	The perfect virus
	One-time execution
	Boot sector viruses
	Memory resident viruses
	Somewhere else …
	Virus Signatures
	A fundamental problem with Trojan horses
	Virus signatures
	Storage patterns
	Execution patterns
	Polymorphic viruses
	Virus effects and causes
	Prevention of infection
	Upcoming
	Next time…
	Reminders

